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Abstract: Software for robotic systems is becoming progressively more complex despite the existence
of established software ecosystems like ROS, as the problems we delegate to robots become more
and more challenging. Ensuring that the software works as intended is a crucial (but not trivial) task,
although proper quality assurance processes are rarely seen in the open-source robotics community.
This paper explains how we analyzed and improved a specialized path planner for steep-slope
vineyards regarding its software dependability. The analysis revealed previously unknown bugs
in the system, with a relatively low property specification effort. We argue that the benefits of
similar quality assurance processes far outweigh the costs and should be more widespread in the
robotics domain.

Keywords: robotics; safety software verification; agricultural robotics; path planning

1. Introduction

The sector of agriculture has been changing over the years in response to the world’s
demands. The world’s population has doubled in the last few decades and, by 2050, it is
expected to double yet again. Estimates also indicate that 66% of the world’s population
will live in urban areas, and in 2014 this number was fixed at 55% [1]. Furthermore, human
resources for agricultural labor are running low [2]. These statements indicate a need
for increasing agriculture productivity, although in a way that is both sustainable and
independent of intensive human labor.

The strategic European research agenda for robotics [3] states that robots will improve
agricultural efficiency. A recent literature review found various approaches of robots
in agriculture, especially for harvesting and weeding tasks [4]. This study infers that
most approaches require further development and optimization. The terrains’ harsh
and unstructured environments present several challenges, especially in the steep slope
vineyards located in the Douro Demarcated Region, a UNESCO Heritage place. These
vineyards are unique, in that they grow along hills that block Global Navigation Satellite
System (GNSS) signals and contain strong slopes, dangerous for robot navigation (see
Figure 1).

An approach to the problem of robot navigation in uneven terrain with strong slopes
was proposed in AgRobPP, a path planning system aware of the robot’s center of mass [5,6].
Localization issues have been addressed with techniques to localize the robot indepen-
dently of GNSS [7,8]. However, navigation is but one of many problems. Operating an
autonomous robot in this region raises serious safety concerns; accidents may damage
expensive robot equipment, centenary vine trees, or cause injury to human beings and
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animals. For obvious reasons, physical safety mechanisms, such as barriers, are not fea-
sible in this type of terrain—especially not when vineyards may span up to 70 hectares
(https://sogrape.com/tourism/quinta-do-seixo?slug=quinta-do-seixo, accessed on 22
August 2021). Ensuring safe robot operation is, thus, a responsibility of robotic software.

Figure 1. Typical Douro’s steep slope vineyard.

The rise and standardization of middlewares and software ecosystems such as the
Robot Operating System (ROS) [9] accelerated robotics research and development tremen-
dously. ROS is a multi-lingual and open-source framework based on peer-to-peer archi-
tectures, consisting of several components (nodes) communicating via message-passing
(topics, services) and shared variables (parameters). Still, robotic software is often developed
by roboticists—people who typically have little background in software engineering best
practices [10]. Fortunately, software engineering research is becoming more invested into
dependability and quality assurance for robotics.

In this paper, we show the benefits of roboticists and software engineers joining forces.
More concretely, our main contribution is a case study on improving the software dependability
of AgRobPP, where we define a software analysis workflow that addresses various software
development problems. This workflow is highly based on HAROS (https://github.com/g
it-afsantos/haros, accessed on 22 August 2021) [11], a framework specifically designed to
analyze ROS software. HAROS contains a static analysis tool to verify the conformity
of the developed code with programming style guides such as Google C++ Style Guide
or ROS C++ Style Guide [11]. Besides, HAROS contains a framework to analyze the
system behavior by checking if random inputs generate the expected system outputs [12].
Our report includes estimates of the required effort to apply this process, not only to
demonstrate its efficiency and effectiveness but also to encourage the community in making
similar techniques more widespread among roboticists. In particular, we show how, in a
relatively short time, we were able to uncover behavioral bugs in the AgRobPP system.

As for structure, we start by comparing our approach to other case studies in robotics
in Section 2. We present our case study subject, AgRobPP, in Section 3 and describe our
analysis workflow in Section 4. Section 5 forms the core of the paper, where we explain
how we analyzed and improved the system. Finally, Section 6 discusses our findings and
lists some directions for future work.

2. Related Work

Applying formal methods and quality assurance processes to robotics software is not
a novel concept. Several approaches have been adapted from general-purpose software
engineering [11,13–16], while some were tailor-made for this particular domain [17–20].
Overall, with the increasing investment in robotics research and development, this topic
is gaining more and more traction in the community. In this section, we list a number of
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relevant approaches to analyze the software of robotic systems and compare them to our
own regarding application scope and required effort.

In general, we have observed that, oftentimes, teams approach software quality
assurance in robotics with a single technique as their focus, such as model checking or
runtime verification. The various approaches can be roughly categorized as being based
on formal methods versus being informal or based on static analysis versus dynamic
analysis. In contrast, we have employed a process that integrates multiple techniques into
a single workflow.

At one end of the spectrum, we have approaches based on dynamic analysis, mostly
runtime verification. This is a recurrent topic in the literature, e.g., as seen in [17–20],
which demonstrates the efficiency and effectiveness of this technique. It operates on
concrete implementations during normal operation and requires only an initial property-
specification investment. Most approaches, however, specify properties in such a way
that they are close to programming languages. The exception is [17], which provides
a relatively high-level specification language. Our approach also includes a high-level
property-specification language, but it serves multiple purposes. The same properties can
be used for runtime verification, testing, or model-checking. In addition, as the language is
pattern-based, it has a gentler learning curve, requiring less effort to specify properties.

At the other end of the spectrum, we have static analysis approaches, namely those
based on formal verification. Trojanek et al. [13] translated three open-source robot nav-
igation algorithms from C/C++ to SPARK, a language designed for the development of
reliable software. With the toolkit available to SPARK, and after annotating the programs
with verification conditions, they were able to unveil runtime errors in the original imple-
mentations and prove partial correctness of the translated algorithms. While our approach
is unable to provide proof of correctness, it is able to operate on C++ code directly and
requires considerably less manual work.

Another form of formal verification can be seen in [14], in which the authors model a
high-level planning and scheduling system of Care-O-bot
(https://www.care-o-bot.de/en/care-o-bot-3.html, accessed on 22 August 2021), for human
–robot interaction scenarios. This is a rule-based system formally modeled and fed to a
model checker to prove the correctness of four core behavioral properties (e.g., reminding
a person to take medication at a given time). Compared to our approach, this approach is
limited to models of the system’s behavior. Our approach is able to handle the properties
of the system’s implementation and is able to capture other relevant aspects of software
quality, such as architectural properties.

Mansoor et al. built a dependability case [15] to show that a family of surgical robots
complies with a safety-critical property: that the surgeon is always aware of the position of
the robotic arm within the patient. Their process involves constructing a formal model of
the whole product line and its instances, capturing their collective and individual behavior.
Then, resorting to a model finding tool, they are able to find counterexamples to use as
the basis for tests. Our approach is unable to handle software product lines, but it benefits
from automatic modeling and test generation steps.

Finally, on a different topic, we highlight the work Neto et al. [16], where the authors
used the HAROS framework, as we do in this work, but applied to the FASTEN European
Project—a complete stack of ROS-based software powering a mobile manipulator operating
in an industrial environment. The analyses performed in this study aim to assess and
improve the internal code quality of the project (e.g., compliance with metrics and coding
standards). Successive iterations of analysis and improvement solved 25,440 reported
issues, representing an overall reduction of 90%. Our work employs similar techniques in
an initial phase and then moves on to the full range of features available to HAROS.

3. Case Study Subject

AgRobPP (https://gitlab.inesctec.pt/agrob/agrob_pp/, accessed on 22 August 2021)
will be our case study subject. It is an open-source ROS-based framework for path planning
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in agricultural terrains, specifically for steep slope vineyards. AgRobPP was developed
within the scope of the RoMoVi project (https://www.inesctec.pt/en/projects/romovi#a
bout, accessed on 22 August 2021), and was recently published by the ROSIN European
Project (https://www.rosin-project.eu/, accessed on 22 August 2021) under the AgRobIT
project (https://www.rosin-project.eu/ftp/agrobit-mowing-robot, accessed on 22 August
2021). Typically, these vineyards are located along hills with irregular and sloped terrains
representing a challenge for the path planning task; the ground inclination and robot’s
center of mass need to be considered during the path planning operation. Path planning
operations may also be affected by the agricultural fields’ dimensions, as a lot of compu-
tational memory could be required. For example, a steep slope vineyard from a small
producer has an area of about 1 hectare, but larger farms span up to 70 hectares.

AgRobPP is composed of three main components:

1. AgRob Vineyard Detector—a satellite image segmentation tool [6,21];
2. AgRob Topologic Mapper—a tool to construct a topological map [6,22];
3. AgRob Path Planner—a path planning framework for uneven terrains [5];

AgRob Vineyard Detector is a machine learning tool based in Support Vector Machine
(SVM), designed to detect vineyard lines and extract an occupation grid map without
a previous robot visit to the terrain. AgRob Topologic Mapper takes this grid map and
divides it into smaller zones, saving them in a graph structure. AgRob Path Planner is an
A* search algorithm that navigates in the free cells of an occupation grid map, considering
the robot’s orientation and center of mass. Combined with AgRob Topologic Mapper,
the search space gets reduced to the map’s strictly necessary zones, making it more efficient
in terms of memory.

4. Analysis Tools and Workflow

To improve the overall dependability of AgRobPP we rely on HAROS for our tool-
ing. This framework incorporates multiple analyses in a single workflow, playing to the
strengths of each, and is specially designed for roboticists:

• it takes source code as input, instead of models;
• it reverse engineers formal models as needed [23];
• it uses a high-level, pattern-based property specification language (https://github.c

om/git-afsantos/hpl-specs, accessed on 22 August 2021) that addresses ROS concepts
directly;

• its reports use an interface that caters to ROS developers.

More concretely, our workflow consists of tackling three major (and mostly indepen-
dent) fronts in the following order.

1. Code quality analysis, as seen in [16], aims to improve the overall maintainability of
the project, i.e., make the code easier to read, share, change, and reuse.

2. System architecture analysis, rarely seen in the literature, aims to detect orchestration
problems without executing the system, e.g., mismatching message types.

3. System behavior analysis, as seen in [13–15,17,20], aims to specify and verify diverse
properties about the system’s expected behavior, i.e., correctness.

We tackle code quality first, as it is mostly a ROS-agnostic and application-independent
problem. While refactoring the code is laborious, the analysis is fast, and the results are
immediate. This step unveils general programming mistakes and bad practices that, once
fixed, will reduce the time spent on debugging the application-specific issues detected in
the following steps as the code becomes more maintainable.

Next comes architectural analysis. This requires the model extraction capabilities
of HAROS that, while mostly automatic, are unable to handle all cases in general. To
remedy this, HAROS provides mechanisms for users to specify extraction hints [23] so
that a sound and complete model is achieved. Naturally, there is room for iteration in
this step. Besides manual inspection of the graphical models, a HAROS plug-in (https:
//github.com/git-afsantos/haros-plugin-pyflwor, accessed on 22 August 2021) enables
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user-defined queries that match and report problematic patterns in the model, such as two
nodes exchanging messages but expecting different message types.

Lastly, there is behavioral analysis. Verifying the correctness, or functional safety,
of a system is highly application-specific—it depends on what the system does, and on
the concrete mission or application—and is one of the most sought-after analyses over-
all. HAROS encourages a dependability case approach, as seen in [15], in which users
specify properties about the system’s behavior, possibly break them down into smaller
sub-properties, and then gather evidence of such properties using a variety of techniques.
The properties are specified using the domain-specific HPL language. Then, coupling
properties and extracted system models, different plug-ins handle the verification step.
At the time of writing, plug-ins are available for runtime verification and property-based
testing (https://github.com/git-afsantos/haros-plugin-pbt-gen, accessed on 22 August
2021), as well as model checking [24].

5. Analysis Process and Results

In this section, we describe the analysis process of this case study in terms of our
approach, execution, and interpretation.

5.1. Code Quality Analysis

This type of static analysis is, as mentioned, independent of the concrete system. It is
straightforward to execute, requiring only the installation of HAROS and its dependencies.
No user input is required besides a set of target packages. The reported issues are mostly
divided into Coding Standards and Metrics. As implied by the names, the former refers to
non-compliance with a number of coding standards, while the latter warns against metrics
that fall off expected thresholds.

We evaluated the three packages that make up the AgRobPP repository, a corpus
consisting of 24,910 lines of C++ ROS-based code. An initial analysis resulted in a total
of 7636 issues. Out of these, 7389 issues (96.77%) fall under Coding Standards, while 444
(5.81%) relate to Metrics—note the overlap of 197 issues. Fortunately, 4388 of these issues
are related to code formatting, perhaps the easiest to fix.

Our approach to the formatting issues was simply to discard them. HAROS checks
conformity with both the Google C++ Style Guide (https://google.github.io/styleguide/
cppguide.html, accessed on 22 August 2021) and the ROS C++ Style Guide (http://wiki
.ros.org/CppStyleGuide, accessed on 22 August 2021). In this case, we followed neither.
Instead, we used the ClangFormat tool (https://clang.llvm.org/docs/ClangFormat.html,
accessed on 22 August 2021) to automatically handle formatting, using a configuration
provided by the ROS Industrial repositories (https://github.com/ros-industrial/industrial
_calibration/blob/kinetic-devel/.clang-format, accessed on 22 August 2021). By ignoring
this sub-category, we effectively had to handle 3248 issues.

The following rules give the most recurrent issues.

• “Include all required headers for what you use.”
• “Do not use integer types directly. Use size-specific typedefs, for instance from <cstdint>.”
• “Maximum number of function lines of code of 40.”

The first rule is a simple yet solid practice that might be overlooked without static
analysis tools. The code in question compiled successfully because the necessary libraries
were transitively included in the headers we depended on. Should these headers drop the
transitive dependencies in a future update, the AgRobPP code base would no longer build.
The second rule advises against the use of platform-dependent integer types, e.g., int. It
recommends the use of fixed-size types, such as int32_t, which bolster the portability of
the project. All occurrences of int were manually replaced with an appropriately-sized
integer type. This is a typical example of a tedious fix in the later stages of development.
Had the analysis tools been part of the development process from the start, the int type
would likely not have been used at all. Lastly, we have a metrics issue—functions that
are over 40 lines of code are deemed too long. Fixing this issue after the fact requires care
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so that refactoring the code does not introduce new bugs. As such, it is still an ongoing
process. However, this refactoring led us (indirectly) to uncover a critical fault in the path
planner. Plans are published under two representations (that should always be equivalent):
an array of poses (discrete), and an array of parametric curves (continuous). In some cases,
the two outputs diverged.

Overall, after some back-and-forth iterations over the course of two weeks, we were
able to go from 3248 non-formatting issues down to 1302—a reduction of 60%. We want to
point out that it is easy to get carried away by the numbers with this kind of analysis. The
goal, however, is not to get the number of issues down to zero (likely impossible, some
tools are overzealous), but to get to a point where objectives are met (e.g., compliance with
a standard) and the developers feel more confident about their code.

5.2. System Architecture Analysis

Our approach to architectural analysis was to start with a minimalistic configuration
and progressively build up from there. To define a system configuration, HAROS requires,
at least, the list of ROS launch files that orchestrate and deploy the executables. Choosing
a minimalistic architecture to start enables us to add extraction hints as needed (and to
understand the parsing limitations of HAROS), as well as iteratively fix any potential issues.
Our starting architecture was the AgRob Path Planner node connected to a map server
and a node that generates starting and goal poses in the map—i.e., a complete working
example (Figure 2).

Figure 2. Minimal AgRobPP architecture, showing ROS nodes (rectangles), ROS topics (green) ROS services (blue), and
ROS parameters (purple).

HAROS was mostly able to extract the architecture on its own, but it was unable to
fully resolve the names of 25 ROS parameters. Fortunately, HAROS shows completion
suggestions that help write down the necessary hints. In total, we wrote 29 lines of YAML
data to fix 25 parameter names. In comparison, our full robot system required 320 lines of
YAML data to fix 14 entities and create 61 missing entities.

The analysis itself did not find any relevant issues. Manual inspection of the models,
coupled with several months of prior testing of the system had already ruled out orchestra-
tion mistakes. Regardless, we bolstered our confidence in the system with a small catalog
of 14 queries, applied across all architectures, matching problematic patterns such as:

• topics with unbounded message queues, i.e.,
topics/publishers[self.queue_size == 0]|topics/subscribers [self.queue_size
== 0];

• topics with multiple publishers, i.e.,
topics[len(self.publishers) > 1];

• missing publishers for starting or goal poses, i.e.,
topics[self.topic_name in (’goal_pose’, ’start_pose’) and not self.publishers].

Should any future changes or additions to the system violate any of these rules, there
will be an automatic check in place.
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5.3. System Behavior Analysis

Verifying a robotic system’s behavior is arguably the most challenging and interesting
task in the whole analysis workflow from a software engineering perspective. It is definitely
the task that requires the most amount of work: (i) requirements must be analyzed for each
system configuration; (ii) specifying properties requires careful thought, to avoid logic
mistakes; (iii) verification techniques are harder to implement, and (iv) the verification
process takes longer than previous analyses. In this case, we have applied behavioral
analysis only to the minimal architecture shown in Figure 2.

As previously mentioned, HAROS encourages the construction of dependability cases.
Our high-level property for this particular path planner is that after receiving and loading a
map, given valid starting and goal poses in this map, the AgRob Path Planner shall produce a valid
plan from the starting pose to the goal, if a path between the two exists. This is a complex property,
spanning the whole system, that we have to break down into smaller, more manageable
pieces. After gathering evidence that each sub-property holds, we can argue that the initial,
high-level property does as well.

The property breakdown lends itself naturally to an iterative process. For instance,
we can start by dividing the initial property into the following three pieces.

1. Receiving and loading a map.
2. Receiving valid starting and goal poses in the map.
3. Producing a valid plan if one exists.

Then, we must define what does it mean to load a map, etc., in terms of observable be-
havior, i.e., in terms of exchanged ROS messages. The specified properties are based on ROS
messages because the HPL specification language operates on this concept, treating systems
as black-boxes; we cannot depend on internal behavior, variables, or data structures.

The AgRob Path Planner is designed as a state machine that publishes its current state
on the state topic upon entering a new state. Right away, we can define a number of safety
and liveness properties that encode this state machine, e.g.,

1 globally: no state { not data in { "PLANNING",
2 "WAITING_FOR_MAP", "LOADING_MAP", "READY",
3 "PLANNING_OK", "PLANNING_FAILED" }}
4 after map: some state { data = "LOADING_MAP" }
5 within 2 s
6 after state { data = "READY" }
7 until state { data = "PLANNING" }: no state

The first property (lines 1–3) enumerates all valid states; there should be no message
on state such that its data value is not contained in the specified enumeration. The second
property (lines 4–5) states that after a map is published (there is only one published map
in this configuration), a transition to LOADING_MAP should be observed in the next two
seconds. The third property (lines 6–7) invalidates any state between READY and PLANNING.
In other words, the only available transition from READY is to PLANNING. In total, there are
16 properties related to the path planning state machine.

Now, we can see that loading a map is simply observing a map, and a state sequence
starting with WAITING_FOR_MAP, going through LOADING_MAP and terminating with READY.

Defining valid starting and goal poses is slightly more complex. Poses are valid if (i) they
are located within the map’s boundaries, and (ii) they fall on free space (i.e., not on top of a
wall or obstacle). Maps are given by occupancy grids, such as the one in Figure 3. A pose is
said to be on free space if, after converting from real-world coordinates to map coordinates,
the corresponding grid cell is marked as empty.
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Figure 3. Occupancy grid map of a steep slope vineyard.

A valid plan is defined similarly. Each pose along the plan must be a valid pose. Figure 4
shows an example of two generated paths using the map represented in Figure 3. The blue
path considers the robot’s center of mass, while the red path is ignoring this feature.

Figure 4. AgRobPP path generation example. Blue—considering centre of mass; Red—without
center of mass awareness. Reprinted with permission from ref. [5]. Copyright 2019 Cambridge
University Press.

Besides, for each consecutive pair of poses in the plan, we define safety thresholds for
the distance between their positions and the difference between their orientations. Thus, a
plan is validated with 6 properties.

Overall, the breakdown of a single high-level property led us to specify 30 HPL
properties. However, note that this is not a full specification of the AgRob Path Planner.
The node also publishes the generated path in a ROS format suitable for visualization,
publishes the same path with a parametric curve representation for trajectory controllers,
and may also publish local plans to adapt to new obstacles along the way. Specification for
these features is still ongoing work. We estimate that, for the 30 properties we have so far,
it took about two weeks of fine-tuning and on-and-off discussion between roboticists and
software engineers until both parties were satisfied.

After specification comes verification, and, for this task, HAROS provides plug-ins
based on model checking, runtime verification, and property-based testing. The model
checking plug-in is of limited use for this AgRob configuration. It specializes in system-
wide properties (properties that span multiple components at once) and takes node-specific
properties as axioms. Given this architecture’s small dimension, most of our properties are
axioms rather than assertions to be checked. Once we delve into more complex configura-
tions, the plug-in will become increasingly more helpful, even though it is unable to handle
some language features, such as real-time constraints. Thus, for this step, we focus mostly
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on property-based testing, which, in turn, uses runtime verification to produce observers
(and oracles).

Simply put, this plug-in generates tests that attempt to falsify properties by repeating
test cases over and over, hundreds (or thousands) of times, and by generating semi-random
inputs for each attempt. Once a counterexample is found, it uses heuristics to try to
minimize it, so that only a relatively small (ideally, a minimal) example input is displayed
to the user. In this case, the input is a trace of messages to be published on topics that
the system subscribes, but for which there are no publishers (e.g., the five omitted topics
subscribed by the AgRob Path Planner in Figure 2). Tests do not tamper with topics for
which the system provides publishers.

We could test the path planning node in isolation (a unit test), but, in this case, it is
advantageous to test the full architecture at once. Unit tests would delegate the generation
of maps and poses to the test infrastructure. Generating random maps is of little value (too
much noise), and specifying rules for realistic maps takes too much effort. It is simpler to
include the map_server, and repeat the process for different maps, such as the one shown
in Figure 3.

After spending a full working day (about 8 h) on testing, discussion, and interpre-
tation of test results, we have found 2 properties that needed further fine-tuning (false
assumptions), and 4 bugs without immediate critical effects.

Bug #1: In this simple configuration, some of the published topics of the AgRob Path
Planner should not be used. By stimulating the right inputs, the testing infrastructure
found instances in which unexpected messages could be observed. This is not a critical bug,
because the output of these topics feeds debugging components and unexpected messages
will not imply a danger action from the robot.

Bug #2: The planner should only transition to PLANNING once it receives a starting pose
and a goal pose in the READY state. The lack of proper pre-conditions in the message handler
meant that poses were always being processed, even, e.g., when loading the map. Thus,
poses sent prior to entering the READY state would still trigger a transition to PLANNING.
The consequences of this bug may be severe. The planner may generate a random path,
generating an unexpected behavior with unpredictable outcomes.

Bug #3: Under some circumstances, a plan would be published, but the planner
would not enter PLANNING_OK. This bug will not bring a robotic safety issue but reduces
the reliability of the robot. The entire software may block and freeze the robot.

Bug #4: We expected no plan to be published when on PLANNING_FAILED, but the
planner did publish empty plans. This may cause unexpected severe behavior in the
trajectory controller software (3rd party) that is usually ready to send velocity commands
when a plan is received in a ROS topic.

In summary, with some specification investment and a proper analysis workflow, we
were quickly able to find subtle bugs that had eluded developers for months at this point.

6. Conclusions

This paper reports on the joint effort between roboticists and software engineers to
improve the dependability of robotic software. We defined a software analysis workflow
based on the HAROS framework and applied it to the AgRobPP path planner for steep
slope vineyards. Even though our process relied on HAROS, for its overall convenience and
suitability for the task, the methodology matters more than the tools. The same workflow
can, in theory, be replicated with other tools and, likely, some additional effort.

Transitioning from an ad hoc quality assurance process to a well-defined workflow
had immediate effects on the product’s overall quality. The source code became more
modular and easier to maintain. In addition, 4 bugs in the system’s behavior were detected
and fixed. The benefit–cost ratio is definitely positive, considering the late adoption of
the quality assurance process, and considering that, overall, it took only about 180 man-
hours to achieve these results. We argue, thus, that similar workflows should be more
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widespread in the open-source robotics ecosystem, and the relationship between roboticists
and software engineers should be further exploited.

In terms of future work, our first goal is to achieve a full specification of the AgRob
Path Planner, or as close to it as possible. Not only will this improve our confidence in a core
component of the robotic system as a whole, it will also serve as a form of documentation.
Our second goal is to scale the presented process to more complex architectures so that
more components of the system benefit from it. We will look into integrating further
analyses into the workflow. For instance, we can use software model checking to verify
intra-node functional safety, something we currently lack. We also intend to perform
a statistical evaluation of the code’s performance before and after the bug’s correction.
Lastly, we will start the transition of the robotic software to ROS2, which uses DDS (Data
Distribution Service), supporting real-time aspects and QoS (e.g., Deadline and Reliability).
These features will open several possibilities for the development of the HAROS framework
in the future.
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