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ABSTRACT
Robotic technologies are continuously transforming the do-
mestic and the industrial environments. Recently the Robotic
Operating System (ROS), an open source middleware frame-
work, has been widely adopted both by industry and academia,
becoming the de facto standard for developing robot applica-
tions. Guaranteeing the correct behaviour of robotic systems
is, however, challenging due to their potential for parame-
terization and heterogeneity. Although different approaches
exist, focusing on concrete domain spaces for specific scenar-
ios, no general approach to reason about ROS systems has
yet arisen. This paper proposes an approach to model and
verify ROS systems using real time properties, focusing on
one of the main features of ROS, the communication between
nodes. It takes low-level parameters into account, such as
queue sizes and timeouts, and uses timed automata as the
modelling language. The physical robot Kobuki is used as
a complex case study, over which properties are automat-
ically verified using the UPPAAL model checker, enabling
the identification of problematic parameter combinations.

1. INTRODUCTION
Robotic technologies have dramatically transformed our

world by bringing countless benefits to many sectors, includ-
ing the domestic environment, industrial production sec-
tors, health-care and military activities, leading to an in-
creasingly closer human interaction, where failures can have
catastrophic consequences. In this context, verifying the
correction of a robot’s software controllers is an additional
burden imposed on the developers, which are often oblivious
of software engineering best practices.

In recent years the Robot Operating System (ROS) [9] has
gained attention both in industry and academia, and has be-
come the de facto standard for the development of robotic
applications. ROS is an open source middleware framework
that provides common robot-specific services and libraries,
such as component communication, hardware abstraction,
and low-level device control. The fundamental components
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in ROS-based applications are nodes (or processes) that
communicate through a publisher-subscriber paradigm, where
messages are organized into named topics. A node (e.g, a
sensor) shares information by publishing messages on the
appropriate topic, while nodes that want to receive informa-
tion (e.g., an actuator) subscribe to the relevant topics. A
special node, dubbed ROS master, ensures that publishers
and subscribers find each other in order to establish peer-
to-peer communications.

ROS gives a lot of flexibility to developers. They can
choose from a set of popular programming languages, and
customise core libraries to modify architectural parameters
such as incoming and outgoing queue sizes, maximum time
to wait for incoming messages, and rate of publishing. Con-
sequently there is no complete solution to formally analyse
and verify ROS programs, and different approaches have
been proposed. These include the use of model checkers,
static analysis techniques, proof assistants, and runtime mon-
itors [11, 12, 1, 2, 8, 10]. André et al. [10] provide an attempt
to give a global view over code quality of ROS applications
by combining existing tools that apply code quality metrics
and test against code standards.

This work presents a generic approach to verify real-time
properties of ROS-based applications, with special focus on
node communication. ROS applications are modelled using
timed automata [6], and properties are verified using model
checking – more specifically the UPPAAL model checker [5].
Our approach is illustrated via a small example, where two
publishers communicate with a subscriber, and a more com-
plex example that models the controllers of the physical
robot Kobuki1. Using our approach we are able to identify
problematic combinations of configuration parameters, such
as queue sizes and timeouts, and possible problems with the
existing code used by Kobuki.

To summarize, our main contributions in this paper are:

• Formalisation of concrete ROS-based applications, vary-
ing the values of architectural parameters;

• Use of the UPPAAL model checker to implement and
verify ROS-based applications;

• Application of our proposed approach to the ROS-
based Kobuki robot as a case study, describing the
construction of a timed model from the sourcecode and
the verification of safety and liveness properties.

This paper is structured as follows. Section 2 describes
related approaches. Section 3 recalls timed automata and a
1http://kobuki.yujinrobot.com/



logic to specify timed properties. Section 4 describes how to
model and verify ROS applications using timed automata.
Section 5 illustrates our approach using the more complex
Kobuki case study. Finally, Section 6 concludes this paper.

2. RELATED WORK
Je Huang et al. [8] proposed ROSRV, a runtime verifica-

tion framework for safety and security properties of ROS-
based applications. ROSRV provides a specification lan-
guage to express safety properties, and automatically gen-
erates ROS nodes that monitor said properties during ex-
ecution. Recently, Adam et al. [1] introduced Declarative
Robot Safety (DeRoS), a Domain-Specific Language, to ex-
press functional safety properties for mobile robots. The
idea is similar to ROSRV, in that it also produces nodes that
monitor these properties during runtime. However, both ap-
proaches are limited in terms of expressiveness, and both
incur some overhead due to monitor activity.

Cowley and Taylor [7] proposed a static verification of
robot behaviour using dependent type theory and linear
logic embedding in Coq. More recently, Anand and Knepper
[2] presented ROSCoq, a Coq framework for developing cer-
tified systems in ROS by extending the LoE framework, to
enable holistic reasoning about the cyber-physical behaviour
of robotic systems. The use of CoRN’s theory of construc-
tive real analysis enables the framework to accurately reason
about computations with real numbers. Nonetheless, even
correct-by-construction code produced by Coq is prone to
flaws in ROS-specific architectural constraints.

Webster et al. [12] proposed a formal verification approach
of industrial robotic programs using the SPIN model checker,
addressing only three properties – deadlocks, collisions, and
kill-switch violations. The proposal does not involve any
kind of ROS-specific architectural properties. The authors
use SPIN to formally verify the ROS-based autonomous
robotic assistant “Care-O-bot” [11]. The proposal is very
specific to that particular robot, and is aligned only towards
the verification of high-level decision making rules.

3. PRELIMINARIES: TIMED AUTOMATA
Timed automata [6, 3, 4] is one of the most widely used

formal models to specify and verify real-time systems. A
timed automaton consists basically of a finite automaton ex-
tended with a set of real-valued variables modelling clocks.
Transitions are labelled by constraints defined on clock vari-
ables (called clock-constraints) to restrict the behaviour of
an automaton. All clocks of an automaton are initialized to
zero when the system is started, and increase synchronously
whenever time evolves. Individual clocks may be reset to
zero when certain transitions are taken.

This section starts by formalising timed automata, fol-
lowed by a brief explanation on how to verify systems mod-
elled with timed automata using temporal logics.

3.1 Specifying Timed Automata
Timed automata are labelled transition systems enriched

with constraints over so-called clocks. A clock is a special
variable capturing the time passed since it was last reset.

Definition 1 (Clock Constraint). A clock constraint
g over a set of clocks C given by the grammar g ::= true |
x�n | x − y�n | g ∧ g, where n ∈ N, x, y ∈ C and
� ∈ {>,>,=, <,6}.

InitS

cS ≤ 20
Wait

〈
cS ≥ 10

〉
send!

ack?

cS := 0

InitR
Transmit

cR ≤ 20

send?

cR := 0

〈
cR ≥ 15

〉
ack !

Figure 1: Network of two timed automata, modeling
a sender (left) and a receiver (right).

Definition 2 (Timed Automata). A timed automa-
ton is a tuple 〈L, l0,Σ, C, T, Inv〉 where L is a finite set of
locations, `0 ∈ L is the initial location, Σ is a finite alphabet
of actions, C is a set of clocks, T ⊆ L×CC(C)×Σ×2C×L
is the set of transitions, CC(C) denotes the set of all clock
constraints over C, and Inv : L → CC(C) assigns invari-
ants to locations.

Intuitively, a connector in a location ` can evolve either
by (1) letting time pass, i.e., by incrementing all its clocks
without breaking the invariant Inv(`), or by (2) taking a
transition (`, g, a, C, `′) if the conditions g and Inv(`′) hold,
going to the location `′ and setting the clocks in C to zero.

The actions in the alphabet Σ are used to synchronise with
other automata. More precisely, two automata with a shared
action a ∈ Σ are only allow to take a transition labelled with
a when the other automata can also take a transition with a.
A set of automata running in parallel, synchronising actions
and evolving their clocks simultaneously, is called a network
of timed automata. We follow the convention that action
synchronisation can only occur in pairs, and we use their
notation a! and a? to mean that performing a! triggers a? to
be performed [5]. Furthermore, we omit clock constraints,
actions, and reset sets from the labels whenever they are
true, irrelevant, and ∅, respectively. This is illustrated in
the example below with a network of two timed automata.

Example 1. We depict in Figure 1 a network of two sim-
ple timed automata. Colours are used to distinguish the dif-
ferent elements: node invariants, guards, actions, and clock
resetting. We use angle brackets 〈·〉 to denote guards on
edges, and double-lines to denote initial states.

Initially both the sender S and the channel C are in their
left locations, and their clocks cS and cR are set to 0. Then
S can wait at most 20 time units until it can fire send ! and
go to the Wait state, making R to take the send? transition.
The clock cR is reset in the process, and the automata can
now wait at most 20 time units until the ack ! and ack? ac-
tions can be taken. The guards in the labels produce a delay
of at least 10 and 15 time units when taking a transition,
when in the left and the right locations, respectively.

UPPAAL extensions. To ease the encoding of ROS
systems, we rely on some UPPAAL extensions: (1) commit-
ted states, (2) internal variables, and (3) parametric actions.
Committed states are special states with a time invariant
that does not allow time to pass, and with higher priority
than any other (non-committed) state. Internal variables
are variables assigned to each automata, which are bounded
and can be both read in the guards (together with the clock
constraints) and updated via an update statement, i.e., after
the transition is taken, together with the reset of the clocks.
Finally, actions can have parameters and variables, i.e., it



is possible to write the action send(42 )! to send a value 42,
and send(x )? to bound a received value to the variable x.

The formal semantics of these extensions is omitted for
simplicity, but can be found in the literature (e.g., [6, 4]).

3.2 Verifying Timed Automata with UPPAAL
UPPAAL [5] is a model-checker toolbox based on the

theory of timed automata which performs forward analy-
sis with extrapolation. It provides some extra features, such
as bounded integer variables and broadcast channels. This
section presents a temporal logic named Timed Computation
Tree Logic (TCTL) [5, 3], used by UPPAAL as a query lan-
guage to describe desired properties of (networks of) timed
automata. This query language consists of path formulas φ,
which in turn use more dedicated state formulas ψ. State
formulas are defined over automata locations and clocks.

Definition 3 (TCTL formulas). A TCTL formula φ
is given by the grammar below.

φ ::= ∃3ψ | ∀3ψ | ∃2ψ | ∀2ψ | ψ1 → ψ2

ψ ::= A.` | g | ¬ψ | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ψ1 ⇒ ψ2

A.` represents the location ` in the automaton A, g is a
clock constraint, and ¬, ∨, ∧ and ⇒ represent the usual
logical negation, disjunction, conjunction, and implication.
The temporal operators ∃, ∀, 3, and 2 describe the range of
states for which the state formulas ψ must hold, and ψ1 →
ψ2 is a shorthand for ∀2 (ψ1 ⇒ ∀3ψ2) (which cannot be
written in our syntax), read ψ1 leads to ψ2.

We make precise the meaning of the temporal operators
using the timed automata in Figure 1 as a running example.

∃3ψ means that there must exist a sequence of transitions
such that, at some point, ψ holds. For example, ∃3S .InitS ⇒
(cS > 19) means that the clock cS can become higher than
19 while in location InitS in S.

- ∀3ψ means that for every sequences of transitions, at
some point ψ can hold. For example, ∀3 cR > 19 means
that, at any given point of the execution, one can find a
future state where cR is higher than 19.

- ∃2ψ means that there must exist a sequence of transitions
such that ψ always holds. For example, ∃2 (cS = 11) ⇒
S .Wait means that there exist a sequence of transition where
the clock cS is 11 while the automaton S is in Wait location.

- ∀2ψ means that for every sequences of transitions, ψ must
hold in every intermediate state. For example, ∀2 (cS ≥
0 ∧ cS ≤ 40) means that the clock cS will always be within
0 and 40 in the automaton S at any point of executions.

- ψ1 → ψ2 (i.e., ∀2 (ψ1 ⇒ ∀3ψ2)) denotes that when-
ever ψ1 holds then ψ2 must eventually hold. For example,
S .Wait → R.Transmit means that, once S .Wait is reached,
R.Transmit will always be reachable.

4. VERIFYING ROS APPLICATIONS
This section describes how to model and verify ROS-based

applications with time constraints, using as a running exam-
ple a publisher-subscriber implementation. We start by ex-
ploring how to extract key parameters from the source code
of ROS applications (Subection 4.1), which are then used to
formally model them as a network of timed automata (Sub-
section 4.2). UPPAAL is then used to reason and to verify
properties about such applications (Subsection 4.3).

Code Snippet 1: A Subscriber Node

void chatterCallback(const
std_msgs::String::ConstPtr msg) {

//... do some work ...
}

int main(int argc, char **argv) {
ros::init(argc, argv, "listener");
ros::NodeHandle n;
ros::Subscriber sub =

n.subscribe<std_msgs::String>("chatter",
1000, chatterCallback);

ros::Rate loop_rate(10);
while (ros::ok()) {

//... do some work ...
ros::spinOnce();
loop_rate.sleep();

}
return 0;

}

4.1 Code Analysis of a ROS Application
The fundamental components in ROS-based applications

include nodes (or processes), transmission channels (or top-
ics), and messages. Nodes communicate via a publisher-
subscriber message passing mechanism: a publisher can send
a message to a given channel, and every subscriber of that
channel will receive the message. Publisher nodes send mes-
sages to a channel by adding them into the channel’s queue,
which are subsequently dequeued and added to the sub-
scribers’ queue. Observe that the same channel can be used
by multiple publishers and subscribers [9].

An example of a subscriber node in ROS is depicted in
Code Snippet 1. Observe that the node subscribes the chan-
nel chatter of the message type std_msgs::String, with a
queue-size of 1000. By invoking ros::spinOnce in a regular
interval (the loop_rate object is set to 10 in this exam-
ple), the node processes incoming messages in the queue by
executing the callback function chatterCallback.

Observe that the rate at which ROS can empty a publish-
ing queue depends on the time taken to actually transmit the
messages to subscribers, and is largely out of our control. In
contrast, the speed with which ROS empties a subscribing
queue depends on how quickly it processes callbacks. Thus,
the application developer is responsible for setting reason-
able publisher and subscriber queue sizes to avoid overflows.
When a queue is full, new upcoming messages will replace
the oldest ones. Note that one can reduce the likelihood
of a subscriber queue overflowing by (1) ensuring that call-
backs, via ros::spin or ros::spinOnce, are frequent, and (2)
reducing the amount of time consumed by each callback.

The static analysis phase, currently not automated, re-
quires the extraction of ROS code parameters that affect
the desired properties of ROS-based robotic applications,
including the publisher’s publishing rate, the subscriber’s
“spin” rate to process callbacks, the time to transmit mes-
sages over channels, and the time to process callbacks.

4.2 ROS Applications as Timed Automata
Consider a ROS application with three processes, pub-

lishers P1 and P2 and subscriber P3 for a channel Ch1 (Fig-
ure 2). The notation Qi→j denotes a queue associated with
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Figure 2: Simple ROS publisher-subscriber scenario.

the publisher Pi and the channel Chj , and Qi←j a queue as-
sociated with the subscriber Pi and the channel Chj . This
ROS publisher-subscriber mechanism is modelled in Fig-
ure 3 as timed automata. Different values of the parameters
PubTime, SubTime, Tmin, Tmax, CBmin, and CBmax yield
different variations of the automata.

Publishers P1 and P2 are uniquely identified with id as a
parameter (Figure 3(a)), and send messages every PubTime
time-units. The subscriber invokes ros::spinOnce to pro-
cess callbacks every SubTime time-units (Figure 3(b)), and
the transmission of messages over the channel takes between
Tmin and Tmax time-units (Figure 3(e)). Variable CBavail
represents the number of queued callback invocations, and
is shared by the automata in Figures 3(d) and 3(f). The
replaceOld() method of Q3←1 replaces the oldest message in
the queue by the upcoming message when the queue is full.

When ros::spinOnce is invoked the method callAvailable()
is called on the callback queue CBQ, which processes all call-
backs currently in the queue. The processing of callbacks
takes between CBmin and CBmax time-units. Observe that
we model the callAvailable() method without a timeout
parameter in ros::CallbackQueue (Figure 3(f)).

4.3 Verification in UPPAAL
The corresponding implementation of the models in UP-

PAAL is presented in Appendix A. Varying queue sizes and
time constraints, we verify the following properties about the
associated queues (“whether no path leads to an overflow of
the queue”) using the UPPAAL model checker:

Pr1: ∀2 ¬Q1→1.Overflow
Pr2: ∀2 ¬Q2→1.Overflow
Pr3: ∀2 ¬Q3←1.Overflow

Using UPPAAL it is possible to experiment different com-
binations of values of parameters and investigate which ones
validate these desired properties. The parameters define the
three queue sizes, the transmission time, the processing call-
back time, the publishing time-gap, and the spin time-gap.

For example, using the assignment Q1→1 = Q2→1 = Q3←1

= 5, Tmin = 3, Tmax = 4, P1.PubTime = 8, P2.PubTime =
7, and P3.SubTime = 15, none of the three properties hold.
By using instead P2.PubTime = 8 and P3.SubTime = 18
the properties Pr1 and Pr2 hold, and all property hold if we
lower the value of P3.SubTime to 17.

5. CASE STUDY: KOBUKI ROBOT
Kobuki is a ROS open source robotic application23 devel-

oped by Yujin Robotics (Korean firm) and Willow Garage

2http://wiki.ros.org/kobuki
3https://github.com/yujinrobot/kobuki

(from USA) for research and educational purposes.

5.1 Kobuki Source Code Analysis
Kobuki is integrated with various sensors, velocity con-

trollers, a command multiplexer, and a high precision mo-
tor. The schematic diagram of its ROS-based architecture
is depicted in Figure 4. Our analysis focuses on the Safety-
Controller, which identifies obstacles and tries to move the
robot to a safer position, and the Multiplexer, which manages
movement messages that arrive from different controllers.

The SafetyController-Update node subscribes the events/
wheel drop, events/bumper and events/cliff channels, to re-
ceive messages from the wheel-drop, bumper and cliff sen-
sors, respectively. Published messages are enqueued into
the corresponding subscriber queues (QWheel, QBumper,
and QCliff, respectively). These queues are inspected at
a given rate by invoking the callAvailable() method, process-
ing the sensor messages and updating shared boolean state
variables capturing, e.g., if the left wheel is dropped. Based
on these shared variables, the SafetyController-Publisher node
publishes at a fixed rate command-velocity (CmdVel) mes-
sages to a channel subscribed by the Multiplexer node, such
as “stop” when wheel-drop events occurs or “move back” if
the bumper is pressed or a cliff detected. In turn, Multiplexer
combines these messages with messages from other nodes
that control the robot, like a RandomWalker node, giving
higher priority to messages from the safety controller.

5.2 Timed Modeling of the Safety Controller
This section formally specifies the SafetyController-Up-

date component. SafetyController-Publisher can be mod-
elled as a traditional publisher, as depicted in Section 4.2.

The upper half of the architecture from Figure 4 is mod-
elled by the automata in Figure 5. Figure 5(a) models any
of the three sensors (Wheel-Drop, Bumper, or Cliff ) and
their position (Left, Center, or Right)). Its time constraint
ensures that sensors wait at least 1 time unit before pub-
lishing a new message. Figure 5(b) models any of the sub-
scriber queues assigned to the safety controller. The variable
CBavail, shared with the automaton in Figure 5(d), captures
the amount of received messages, which will trigger the ad-
dition of callbacks to the callback queue.

The SafetyController-Update node (Figure 5(c)) is a sub-
scriber that processes incoming sensor messages by invok-
ing ros::spinOnce and updates the state accordingly. This
is done by periodically calling callAvailable() (Figure 5(d)),
which processes all callbacks in the callback queue. The for-
mer periodically calls ros::spinOnce based on the spinRate
parameter. Observe that callAvailable() is parameterised by
a TimeOut parameter that controls how long to wait for a
callback to be available before returning. In ROS 0.10 the
default timeout is 0.1 seconds, whereas in ROS 0.11 it is 0
seconds. A complete implementation of the SafetyController-
Update is included in Appendix B for reviewing purposes.

UPPAAL Verification of SafetyController-Update.
Using the timed automata models in Figure 5 it is possi-
ble to experiment with different parameters and queue sizes
and verify if desired properties are valid. The results of such
experiments can be found in Table 1, using the properties
PrW , PrB , and PrC .One can conclude, for example, that no
sensor will overflow its queue when all queues have size 12,
the spin rate of the safety controller and the timeout for the
callAvailable are 1, and the callback time is between 1 and 2.
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〈
t ≥ CBmax

〉

〈
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〉

(f) Callback queue CBQ → callAvailable()

Figure 3: Formal timed modelling of a ROS publisher-subscriber message passing scenario.

Queue sizes of
safety controller

Spin time-gap of
safety controller

callAvailable()
timeout

Callback
time

Properties

QWheel QBumper QCliff spinRate TimeOut CBmin CBmax PrW PrB PrC

10 10 10
1

2 1 2 X 7 7
4 1 2 X 7 7

2 2 1 2 X 7 7
3 2 1 2 7 7 7

12 12 12
1 1

1 2 X X X
4 5 7 7 7

3 2 1 2 X 7 7
6 2 1 2 7 7 7

Table 1: Queue-Overflow w.r.t. various dependable parameters in the module SafetyController-Update.

5.3 Finding problems in Kobuki
In addition to the above safety properties pertaining to

queue overflow, this section identifies some desirable, con-
text specific, properties of the Kobuki system. Uusing the
UPPAAL model checker, we will show that the safety con-
troller node may lose (important) information from the sen-
sors in the presence of overflows (Subsection 5.3.1), and that
in some scenarios, messages from the RandomWalker never
reach the Kobuki engine (Subsection 5.3.2).

5.3.1 Lost Sensor Messages
The models in Figure 5 feature the timing constraints and

queue sizes but do not encode the particular behaviour of the
Kobuki nodes, like the message processing or the update of
the internal state. This subsection shows that a sensor—we
will use the left wheel sensor—may fail to trigger the desired
change in the state variables of the safety controller. For

this, we enhance the model for the wheel sensor by replacing
the one in Figure 5(a) by an equivalent one that alternates
between on and off states. Assuming the safety controller
state variable wheel left dropped represents if the wheel is
dropped, the desired property can be formulated as follows.

Wheel Left.on & SafetyController-Update.spinLoc →
wheel left dropped (Sensor-Property)

This formula asserts that, whenever the left wheel is dropped
and the safety controller invokes ros::spinOnce, the event
will eventually be reflected in the corresponding safety con-
troller’s state variable wheel left dropped.

The property validity depends on whether the subscriber
queue QWheel may or not overflow. If QWheel can overflow,
the property will not be satisfied, since the Wheel Left.on
sensor message may be replaced by other sensor message
due to queue-overflow. Otherwise the property holds, which



Figure 4: Schematic diagram of ROS-based Kobuki architecture
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(b) Automaton of the safety controller’s subscriber queue.
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〈
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〉

(d) callAvailable (ros::WallDuration TimeOut) method to pro-
cess all callbacks in the callback queue of the safety controller.

Figure 5: Formal Timed Modeling of the module SafetyController-Update

means the safety controller will always react to the messages
from the left wheel sensor. This example shows the impor-
tance of correctly setting the parameters to ensure queues do
not overflow in our Kobuki case study, and the advantages
of formally verifying which parameters can be used.

5.3.2 Lost Messages From RandomWalker
Kobuki supports multiple nodes to control the movement

of the robot by simply sending command velocity messages
to the Multiplexer, which is responsible to sort and filter out
messages based on their priority. In our example there is
one such node, the RandomWalker. Thus, the Multiplexer
subscribes two topics, from the safety controller and from
the random walker nodes, and sets a timer used by the call-
backs cmdVelCallback() and timerCallback().

The cmdVelCallback() and timerCallback() callbacks are



Init

PassMsg Start
spinOnce?

active(i) := true

〈 allowed = VACANT or allowed = i or
Priority(i) > Priority(allowed)

〉
Pass(i)!

allowed = i

resetTimer(i)!

〈 allowed 6= VACANT or allowed 6= i or
Priority(i) ≤ Priority(allowed)

〉
resetTimer(i)!

Init

t ≤ TimeOut(i)

〈
t = TimeOut(i) & allowed = i

〉
allowed := VACANT, active(i) := false, t := 0

〈
t = TimeOut(i) & allowed 6= i

〉
active(i) := false, t := 0

resetTimer(i)?

t := 0

Figure 6: Timed Model of cmdVelCallback() (left) and timerCallback() (right) from the Multiplexer.

formalised as timed automata in Figure 6 – the automata for
the remaining subscriber and publisher queues of the Multi-
plexer can be defined as in previous sections. The cmdVel-
Callback(), when processing a value from the ith subscribed
topic, acts as follows. It resets and starts the timer associ-
ated to the ith topic – this timer will trigger timerCallback()
at a fixed rate. It assigns active(i) to true, indicating the
ith topic is active. It publishes the value if one of 3 condi-
tions are met: if there is no other active topic (i.e. allowed
=VACANT), or if the topic is already in an allowed state (i.e.
allowed = i), or if the topic has higher priority than the cur-
rently allowed topic (i.e. priority(i) > priority(allowed)).
The callback timerCallback() for the ith topic, based on a
timeout, sets active(i) to false and sets allowed to VACANT
when this is the currently allowed topic.

We now formulate a desired property for the Multiplexer
(specified in UPPAAL in Appendix C), stating that the Ran-
domWalker can send messages to the engine.

∃3 Random cmdVelCallback.PassMsg (MUX-Property)

Here Random cmdVelCallback is the cmdVelCallback() au-
tomata that analyses messages from the random walker.

By experimenting with different parameters, we observe
that the model does not satisfy this property for higher pub-
lishing rates, higher priority of SafetyController-Publisher and
higher values of TimeOut(i). This means that CmdVel mes-
sages from the RandomWalker component may never reach
the Kobuki base-motor if messages from the (higher priority)
safety controller are published frequently enough.

6. CONCLUSIONS
This paper proposes a generic approach to model-check

real-time properties of ROS-based applications using timed
automata, with special focus on the communication between
nodes. This approach allows to verify safety and liveness
properties of complex ROS-based robots that could be in-
fluenced by various architectural parameters, such as queue
sizes and internal timeouts. We use the UPPAAL model
checker to model ROS applications and to verify real-time
properties, and illustrate our approach by analysing the source
code of a popular physical robot Kobuki. This model is then
used to guide the search for parameters that can validate
some desired properties of Kobuki, such as not losing sen-
sor messages nor ignoring movement instructions. Without
our model, and relying only on physical experimentations,
these parameters would be very difficult, time consuming,
or infeasible to find.
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APPENDIX
A. THE PUBLISH-SUBSCRIBER IN UPPAAL

The UPPAAL automata corresponding to the timed au-
tomata in Figure 3 are depicted in Figure 7.

B. THE SAFETYCONTROLLER-UPDATE IN
UPPAAL

The Uppaal implementation of the timed model of the
module SafetyController-Update is shown in Figure 8. Ob-
serve that variables SIZE and MsgCount represent the size
of the subscriber queue and the number of messages cur-
rently present in the queue, to capture the queue’s fullness
and emptiness conditions.

C. THE MULTIPLEXER MODULE IN UP-
PAAL

The timed model of the module Multiplexer is implemented
in Uppaal and is shown in Figure 9.



(a) Publishers “Pid” (id =
1, 2)

(b) Subscriber “P3”

(c) Publisher Queues “Qid→1” (d) Subscriber Queue “Q3←1”

(e) Channel “Ch1” (f) callAvailable() to process callbacks in Callback
Queue CBQ

Figure 7: Implementation of the Timed Model of Figure 3 in UPPAAL.



(a) Template for Sensors (b) SafetyController-Update:
safety controller which up-
dates internal state.

(c) Template for safety controller’s Subscriber Queues QWheel, QBumper,
and QCliff.

(d) “callAvailable (ros::WallDuration TimeOut)” method to pro-
cess all callbacks currently in the Callback Queue for Safety-
Controller.

Figure 8: Implementation of the module SafetyController-Update using Uppaal Model Checker



(a) Template for
SafetyController-Publisher
and RandomWalker who
publish Command Velocity
Messages

(b) Multiplexer node

(c) Template for Subscriber Queues which are subscribed
by Multiplexer

(d) Template for Callback cmd-
VelCallback() for two subscriptions
(denoted Safety cmdVelCallback and
Random cmdVelCallback resp.)

(e) Template for Callback timer-
Callback() for two subscriptions
(denoted Safety timerCallback
and Random timerCallback
resp.)

Figure 9: Uppaal Model for the module Multiplexer


